

Confidential Verifiable Transactions $\mathbf{PP} = (p, g)$.

>> i34=mod(i3+i4,p-1) i34 = 115795473 **Non-Interactive Zero Knowledge Proof - NIZKP PP** = (*p*, *g*). *A***: NIZKP of knowledge** *x*: **PrKA =** *x* **= randi(***p***-1) PuKA =** *a* **=** *g ^x* **mod** *p* **1.** Computes *r* for random number *u*: *u***=**randi(*p***-**1) *r=g ^u*mod *p* B: **PuKA =** *a* Verifies: *g ^s=ra ^h***mod** *p* **PuKA =** *a* (*r, s*)

2. Generates *h*: $PrK_A = x$ is called witness h **=randi** $(p-1)$ **for a statement** $\text{PuK}_A = a$ **. 3.** Computes: $s=u+ xh \mod (p-1)$ Let A wants to prove the knowledge of X and $L = i.34$. Then the statement $st = \{a = g^x \text{ mod } p, p_{34\beta} = g^2 \text{ mod } p\}$ $u \leftarrow \text{randi}(\mathcal{I}_p^*)$ \tilde{v} \leftarrow randi (\mathcal{X}_{p}^{*}) Commitments to and to are generated:

 $t_1 = g^u$ mod p $\begin{cases} h = H(a||D_34| |t_1|| t_2) \ t_2 = g^v \text{ mod } p \end{cases}$ $\begin{cases} h = H(a||D_34| |t_1|| t_2) \ t_2 = g^v \text{ mod } p \end{cases}$ Net

verifies $g^r = t_1 \cdot a^h$ mod p
 $g^5 = t_2 \cdot (D_{34/3})^h$ mod p $r = x \cdot h + u \mod (p-1)$ $3 = i \cdot b + \vartheta \ mod(p-1)$ Correctues: $g' = g^{(x \cdot h + u) \mod (p-1)}$
 $g'' = g^{(x \cdot h + u) \mod (p-1)}$ $g^{5}=g^{(i\cdot h+\nu) \mod(p-1)}$
 $u_{1}^{(i)}=g^{ih}\cdot g^{v}=(g^{i})^{h}\cdot g^{v}=(D_{34/3})^{h}\cdot U_{2}$ Till this place However, the scheme presented above is insufficient to realize a proof of ciphertext
equivalency. We propose the modification of the existing NIZKP to realize two ciphertext
equivalency proofs, namely $C_{\alpha,l}$ in (18), (1 $St = \{(c_{a,t}, \delta_{a,t}), (c_{\beta,E}, \delta_{\beta,E}), a, \beta\}.$
The random integers $u \leftarrow randi(Z_q)$ and $v \leftarrow randi(Z_q)$ are generated by Alice, and the value (-v)mod *q* is computed. The proof of ciphertext equivalence is computed using three
computation steps:
The following committents are computed:
 $t_1 = g^u \mod p;$
 $t_2 = g^v \mod p;$
 $t_3 = (a_a)^u \cdot \beta^{-u} \mod p.$ (24)
 $t_3 = (a_a)^u \cdot \beta^{-$ 1. 2. The following *h*-value is computed using the cryptographically secure *h*-function *H*:
 $h = H(a||\beta||t_1||t_2||t_3||)$. (26) 3. Alice, having her $PrK_A = x$ randomly generates the secret number *l* for *E* encryption and computes the following he following
two values: $r = x \cdot h + u \mod q$; (27)
 $s = l \cdot h + v \mod q$. (28)

Then Alice declares the following set of data to the Net:
 $\{a, \beta, t_1, t_2, t_3, r, s\} \rightarrow \text{Net.}$ (29)

To verify the transaction's validity, the Net computes the *h*-value according then verifies three identities: $g' = a^{h} \cdot t_1;$ (30)
 $g^s = (\delta_{\beta,E})^h \cdot t_2;$ (31)
 $(\epsilon_{\beta,E})^{h} \cdot (\epsilon_{a,I})^{-h} \cdot (\delta_{a,I})^{r} \cdot \beta^{-s} = t_3.$ (32)